Search results for "noise enhanced stability"

showing 10 items of 17 documents

Noisy dynamics in long and short Josephson junctions

The study of nonlinear dynamics in long Josephson junctions and the features of a particular kind of junction realized using a graphene layer, are the main topics of this research work. The superconducting state of a Josephson junction is a metastable state, and the switching to the resistive state is directly related to characteristic macroscopic quantities, such as the current the voltage across the junction, and the magnetic field through it. Noise sources can affect the mean lifetime of this superconducting metastable state, so that noise induced effects on the transient dynamics of these systems should be taken into account. The long Josephson junctions are investigated in the sine-Gor…

Transient dynamickinkmean switching timeSettore FIS/02 - Fisica Teorica Modelli E Metodi Matematicigraphenebreathernoise induced effectlong Josephson junctiondynamic resonant activationGaussian noisenoise enhanced stabilitysine-Gordonshort Josephson junctionnonlinear relaxation timeJosephson junctionJosephson junction; sine-Gordon; Transient dynamics; noise induced effect; noise enhanced stability; dynamic resonant activation; stochastic resonant activation; resonant activation; soliton; breather; kink; Gaussian noise; non Gaussian noise; graphene; short Josephson junction; long Josephson junction; mean switching time; nonlinear relaxation time;stochastic resonant activationresonant activationnon Gaussian noisesoliton
researchProduct

Nonlinear relaxation phenomena in metastable condensed matter systems

2016

Nonlinear relaxation phenomena in three different systems of condensed matter are investigated. (i) First, the phase dynamics in Josephson junctions is analyzed. Specifically, a superconductor-graphene-superconductor (SGS) system exhibits quantum metastable states, and the average escape time from these metastable states in the presence of Gaussian and correlated fluctuations is calculated, accounting for variations in the the noise source intensity and the bias frequency. Moreover, the transient dynamics of a long-overlap Josephson junction (JJ) subject to thermal fluctuations and non-Gaussian noise sources is investigated. Noise induced phenomena are observed, such as the noise enhanced s…

Josephson effectQuantum noise enhanced stabilityGeneral Physics and AstronomyThermal fluctuationslcsh:AstrophysicsDouble-well potential01 natural sciences7. Clean energySettore FIS/03 - Fisica Della Materia010305 fluids & plasmasOpen quantum systemsMetastabilityMetastabilityJosephson junctionlcsh:QB460-4660103 physical sciencesSpin polarized transport in semiconductorsddc:530lcsh:Science010306 general physicsSpin (physics)Quantum fluctuationNoise enhanced stabilityPhysicsmetastability; nonequilibrium statistical mechanics and nonlinear relaxation time; noise enhanced stability; Josephson junction; spin polarized transport in semiconductors; open quantum systems; quantum noise enhanced stabilityCondensed matter physicsNonequilibrium statistical mechanics and nonlinear relaxation timeJosephson junction; Metastability; Noise enhanced stability; Nonequilibrium statistical mechanics and nonlinear relaxation time; Open quantum systems; Quantum noise enhanced stability; Spin polarized transport in semiconductorsDissipationlcsh:QC1-999Open quantum systemlcsh:Qlcsh:PhysicsNoise (radio)
researchProduct

Dynamics of a Quantum Particle in Asymmetric Bistable Potential with Environmental Noise

2011

In this work we analyze the dynamics of a quantum particle subject to an asymmetric bistable potential and interacting with a thermal reservoir. We obtain the time evolution of the population distributions in both energy and position eigenstates of the particle, for different values of the coupling strength with the thermal bath. The calculation is carried out using the Feynman-Vernon functional under the discrete variable representation.

PhysicsWork (thermodynamics)Physics and Astronomy (miscellaneous)BistabilityThermal reservoirTime evolutionBistable potential; Noise Enhanced Stability; Discrete Variable Representation; Caldeira-Leggett modelNoise Enhanced StabilitySettore FIS/03 - Fisica Della MateriaBistable potentialDVRPosition (vector)Quantum mechanicsThermalNESParticleEigenvalues and eigenvectorsDiscrete Variable RepresentationCaldeira-Leggett model
researchProduct

The bistable potential: An archetype for classical and quantum systems

2012

In this work we analyze the transient dynamics of three different classical and quantum systems. First, we consider a classical Brownian particle moving in an asymmetric bistable potential, subject to a multiplicative and additive noise source. We investigate the role of these two noise sources on the life time of the metastable state. A nonmonotonic behavior of the lifetime as a function of both additive and multiplicative noise intensities is found, revealing the phenomenon of noise enhanced stability. Afterward, by using a LotkaVolterra model, the dynamics of two competing species in the presence of Lévy noise sources is analyzed. Quasiperiodic oscillations and stochastic resonance pheno…

Physicsmultiplicative noiseSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciBistabilityThermal reservoirMetastability and bistabilityStochastic resonanceTime evolutionStatistical and Nonlinear Physicsopen quantum systemsCondensed Matter PhysicsNoise (electronics)Multiplicative noisepopulation dynamicnoise enhanced stabilityQuantum mechanicsQuasiperiodic functionStatistical physicsstochastic resonanceQuantumMetastability and bistability; multiplicative noise; noise enhanced stability; stochastic resonance; population dynamics; open quantum systems
researchProduct

EFFECTS OF COLORED NOISE IN SHORT OVERDAMPED JOSEPHSON JUNCTION

2008

We investigate the transient dynamics of a short overdamped Josephson junction with a periodic driving signal in the presence of colored noise. We analyze noise induced henomena, specifically resonant activation and noise enhanced stability. We find that the positions both of the minimum of RA and maximum of NES depend on the value of the noise correlation time tau_c. Moreover, in the range where RA is observed, we find a non-monotonic behavior of the mean switching time as a function of the correlation time tau_c.

PhysicsJosephson effectPhysics and Astronomy (miscellaneous)Condensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesResonant activationJosephson junction; Colored noise; Resonant activation; Noise enhanced stabilityColored noiseStability (probability)SignalSettore FIS/03 - Fisica Della MateriaSuperconductivity (cond-mat.supr-con)Switching timeColors of noiseJosephson junctionRange (statistics)Transient (oscillation)Noise enhanced stabilityNoise (radio)International Journal of Quantum Information
researchProduct

Phase dynamics in graphene-based Josephson junctions in the presence of thermal and correlated fluctuations

2014

In this work we study by numerical methods the phase dynamics in ballistic graphene-based short Josephson junctions. The supercurrent through a graphene junction shows a non-sinusoidal phase-dependence, unlike a conventional junction ruled by the well-known d.c. Josephson relation. A superconductor-graphene-superconductor system exhibits superconductive quantum metastable states similar to those present in normal current-biased JJs. We explore the effects of thermal and correlated fluctuations on the escape time from these metastable states, when the system is stimulated by an oscillating bias current. As a first step, the analysis is carried out in the presence of an external Gaussian whit…

Josephson effectTIMING ERRORSNON-GAUSSIAN NOISEFOS: Physical sciencesBROWNIAN-MOTIONSwitching timeSuperconductivity (cond-mat.supr-con)MetastabilityCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)NOISE ENHANCED STABILITY; ZERO-VOLTAGE STATE; NON-GAUSSIAN NOISE; RESONANT ACTIVATION; ESCAPE-TIME; METASTABLE STATE; BISTABLE SYSTEM; BROWNIAN-MOTION; TIMING ERRORS; FABRY-PEROTMETASTABLE STATEBISTABLE SYSTEMFABRY-PEROTBrownian motionsupercurrentPhysicsESCAPE-TIMERESONANT ACTIVATIONCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsCondensed Matter - SuperconductivitydiffusionSupercurrentBiasingCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsNOISE ENHANCED STABILITYZERO-VOLTAGE STATEColors of noiseNoise (radio)
researchProduct

Enhancement of stability in systems with metastable states

2007

The investigation of noise‐induced phenomena in far from equilibrium systems is one of the approach used to understand the behaviour of physical and biological complex systems. Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The enhancement of the life‐time of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) Ising model (ii) Josephson junction; (iii) stochastic FitzHugh‐Nagumo model; (iv) a population dynamics model, and (v) …

Josephson effectPhysicseducation.field_of_studySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciStochastic volatilityStochastic processPopulationComplex systemStatistical mechanicsNoise Enhanced StabilityStochastic modeling of biological and medical physicsMetastabilityQuantum mechanicsMetastabilityIsing modelStochastic dynamicStatistical physicsMetastability; Noise Enhanced Stability; Stochastic dynamics; Stochastic modeling of biological and medical physicseducation
researchProduct

Role of the colored noise in a FitzHugh-Nagumo system driven by a periodic signal

2007

During these last years the interest in neuronal dynamics increased. The study of this kind of system has been carried out by using the FitzHugh-Nagumo (FHN) model that is a simplified modification of the Hodgkin-Huxley model. Many interesting phenomena can be observed in the presence of fluctuations: modification of detection threshold by manipulation of noisy parameters (FHN model), noise-induced activation and coeherence resonance for suitable noise amplitude (absence of periodic signal), resonant activation for high periodic signals and noise reduction, intrinsic stochastic resonance (ISR) in Hodgkin-Huxley neuron and the enhancement of a weak signal by tuning the subthreshold intrinsic…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciStochastic resonanceNoise (signal processing)Mathematical analysisShot noiseWhite noiseNoise Enhanced StabilityColored NoiseNeuronal modelsymbols.namesakeColors of noiseControl theoryGaussian noisePhase noisesymbolsBrownian noiseResonant ActivationNeuronal models; Resonant Activation; Noise Enhanced Stability; Colored NoiseMathematics
researchProduct

Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System.

2018

The stabilizing effect of quantum fluctuations on the escape process and the relaxation dynamics from a quantum metastable state are investigated. Specifically, the quantum dynamics of a multilevel bistable system coupled to a bosonic Ohmic thermal bath in strong dissipation regime is analyzed. The study is performed by a non-perturbative method based on the real-time path integral approach of the Feynman-Vernon influence functional. We consider a strongly asymmetric double well potential with and without a monochromatic external driving, and with an out-of-equilibrium initial condition. In the absence of driving we observe a nonmonotonic behavior of the escape time from the metastable regi…

quantum statistical methodsQuantum dynamicsquantum Zeno dynamicsGeneral Physics and AstronomyDouble-well potentiallcsh:AstrophysicsReview01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasPhysics and Astronomy (all)functional analytical methodstunnelingMetastability0103 physical scienceslcsh:QB460-466Quantum system010306 general physicslcsh:ScienceQuantum statistical methodQuantum fluctuationQuantum tunnellingPhysicsCondensed matter physicsQuantum noiseFunctional analytical methodQuantum Zeno dynamiclcsh:QC1-999noise enhanced stabilitymetastable potentialdiscrete variable representationOpen systemopen systemsRelaxation (physics)lcsh:Qresonant activationCaldeira-Leggett modellcsh:Physicsquantum systems with finite Hilbert spaceEntropy (Basel, Switzerland)
researchProduct

Noise-induced effects in nonlinear relaxation of condensed matter systems

2015

Abstract Noise-induced phenomena characterise the nonlinear relaxation of nonequilibrium physical systems towards equilibrium states. Often, this relaxation process proceeds through metastable states and the noise can give rise to resonant phenomena with an enhancement of lifetime of these states or some coherent state of the condensed matter system considered. In this paper three noise induced phenomena, namely the noise enhanced stability, the stochastic resonant activation and the noise-induced coherence of electron spin, are reviewed in the nonlinear relaxation dynamics of three different systems of condensed matter: (i) a long-overlap Josephson junction (JJ) subject to thermal fluctuat…

PhysicsJosephson effectCondensed matter physicsStochastic processSpin polarised transport in semiconductorGeneral MathematicsApplied MathematicsQuantum noiseStochastic analysis methodsShot noiseGeneral Physics and AstronomyThermal fluctuationsResonant activationStatistical and Nonlinear PhysicsNoise processes and phenomenaSpin polarised transport in semiconductorsJosephson junctionMathematics (all)Coherent statesStochastic analysis methodSpin (physics)Noise enhanced stabilityJosephson junction; Noise enhanced stability; Noise processes and phenomena; Resonant activation; Spin polarised transport in semiconductors; Stochastic analysis methodsCoherence (physics)Chaos, Solitons & Fractals
researchProduct